# Rugby scores 

Mathieu Bouville

(Dated: May 21, 2015)

## I. NUMBER OF TIMES A TEAM SCORED

Given the score of a rugby team, is it possible to know for instance how many times it scored, how many tries?

## A. Parity

In rugby, penalty kicks and drop goals are worth 3 points each and tries are 5 points. After a try is scored a conversion is attempted, it is worth 2 points. Let $n$ be the number of times a team scored and $S$ the score of that team. Let $p$ be the combined number of penalties and drop goals ( 3 points), ${ }^{1} u$ the number of unconverted tries ( 5 points) and $c$ the number of converted tries ( 7 points). All five numbers are in $\mathbb{N}$. $S$ is known and all four others are unknown.

We have

$$
\begin{equation*}
n=p+u+c \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S=3 p+5 u+7 c \tag{2}
\end{equation*}
$$

In passing, we can notice that the number of points scored kicking is

$$
k=3 p+2 c .
$$

Equation (Z) can be rewritten

$$
S=5(p+u+c)+2(c-p)=5 n+2(c-p) .
$$

The second term on the right-hand side is clearly even, so $S$ and $n$ have the same parity:

$$
\begin{equation*}
n=S \quad \bmod 2 \tag{3}
\end{equation*}
$$

By $a=b \bmod c$, I mean that $|a-b|$ is a multiple of $c$ (not necessarily between 0 and $c-1$ ).

## B. Minimum and maximum

## Clearly

$3 n=3(p+u+c) \leq 3 p+5 u+7 c \leq 7(p+u+c)=7 n$.
Since $n$ is an integer,

$$
\begin{equation*}
\lceil S / 7\rceil \leq n \leq\lfloor S / 3\rfloor . \tag{4}
\end{equation*}
$$

Here $\lfloor x\rfloor$ denotes the floor of $x$ (its integral part) and $\lceil x\rceil$ its ceiling; for instance $\lfloor 2.4\rfloor=2$ and $\lceil 2.4\rceil=3$; for integers, $\lfloor 2\rfloor=\lceil 2\rceil=2$.

[^0]
## C. Examples

If $S=4$, we know that (i) $n$ is even and (ii) $\lceil 4 / 7\rceil \leq$ $n \leq\lfloor 4 / 3\rfloor$, i.e. $n=1$. Since these two conditions are incompatible it is impossible to score 4 points.

If $S=10$, (i) $n$ is even and (ii) $\lceil 10 / 7\rceil \leq n \leq\lfloor 10 / 3\rfloor$, i.e. $2 \leq n \leq 3$; together it means that $n=2$. Indeed the two ways to score 10 points are $5+5$ and $3+7$.

If $S=16$, (i) $n$ is even and (ii) $3 \leq n \leq 5$, i.e. $n=4$. If a team scored 16 points, we can know with certainty that it scored exactly 4 times. If two converted tries were scored the total of 16 would be exceeded, so $c \in\{0,1\}$. If $c=0$ then $p+u=4$ and $3 p+5 u=16$, which yields $p=u=2$. If $c=1$ then $p+u=3$ and $3 p+5 u=$ 9 , so $p=3$ and $u=0$. The only two ways of scoring 16 points are: two unconverted tries and two penalties, or one converted try and three penalties (obviously not necessarily in this order). The kicker scored either 6 or 11 points (assuming he did not score a try).

If $S=15$ or $S=17, n$ is odd and $3 \leq n \leq 5$, i.e. $n \in\{3,5\} . S=15$ and $S=17$ are thus more similar to each other than they are to $S=16 .^{2}$

## D. Recursion

How to score 17 points? Score (i) 10 points plus a converted try or (ii) 12 points plus an unconverted try or (iii) 14 points plus a penalty. This is clearly recursive: if one knows how to get all scores up to 16 points, one can easily find out how to score 17 points. $10=3+7$ or $2 \times 5,12=4 \times 3$ or $5+7$ and $14=2 \times 7$ or $3 \times 3+5$. Thus $17=3+2 \times 7$ or $2 \times 5+7$ or $4 \times 3+5$ or $2 \times 5+7$ or $3+2 \times 7$ or $4 \times 3+5$. Removing the redundant ones, there are just three possibilities: $3+2 \times 7,2 \times 5+7$ and $4 \times 3+5$. As expected, for all of them, $n \in\{3,5\}$. We can see that there can be 0,1 or 4 penalties, but not 2 or 3 (whereas for 16 points there could only be 2 or 3 penalties).

## E. Increasing $S$ by 21

 a function of $S$. Whenever $S$ increases by 21 , the number of possibilities for $n$ increases by 2 (leading to a slope of $2 / 21$ for the linear fit). For instance, for $S=0$ there is a single possibility $(n=0)$, whereas for $S=21$ there are 3 possible values, $n \in\{3,5,7\} . S=1$ and $S=2$ are impossible, and for $S=22$ or 23 there are 2 possible values of $n$.

[^1]

FIG. 1: The number of possibilities for $n$ as a function of $S$.

If $n$ (resp. $n^{\prime}$ ) is the number of times a team scored for a total of $S$ (resp. $S+21$ ), from Eq. ( (I) $^{\prime}$,

$$
\lceil S / 7\rceil+3 \leq n^{\prime} \leq\lfloor S / 3\rfloor+7
$$

If $n$ could take values (of a certain parity) in $\left[n_{1}, n_{2}\right]$ then $n^{\prime}$ can take values (of the opposite parity) in $\left[n_{1}+3, n_{2}+\right.$ $7]$, i.e. it can take two more values.

## II. THE TOTAL NUMBER OF TRIES

With championships where tries are used to calculate a bonus, the number of tries may be known (and displayed live on TV) along with the score.

## A. Properties of the total number of tries $T$

We define the total number of tries

$$
\begin{equation*}
T=u+c \tag{5}
\end{equation*}
$$

Clearly

$$
3 p+5 u+7 c \geq 5(u+c)=5 T
$$

Since $T$ is an integer,

$$
\begin{equation*}
T \leq\lfloor S / 5\rfloor . \tag{6}
\end{equation*}
$$

Plainly, if $S$ is not a multiple of $3, T$ cannot be zero. In that case, $T \geq 1$.

## B. The difference between converted and unconverted tries, $c-u$

$S$ can be rewritten as $S=3(n+T)+(c-u)$. This yields right away $c-u=S \bmod 3$.

- If $S$ is a multiple of 3 , so is $c-u$. (Most of the time, this will mean $u=c$.)
- If $S$ is a multiple of 3 plus 1 then $c-u=1 \bmod 3$. In particular there must be at least one converted try or two unconverted tries.
- If $S$ is a multiple of 3 minus 1 then $c-u=-1 \bmod 3$ and there must be at least one unconverted try or two converted tries.


FIG. 2: Number of possible values for $c-u$ as a function of $S$.

Since $c \geq 0$ and $u \geq 0$,

$$
-\lceil S / 5\rceil \leq-u \leq c-u \leq c \leq\lfloor S / 7\rfloor
$$

Similar to Sec. $\mathbb{E}$, if $S$ is increased by 35 ,

$$
-7-\lceil S / 5\rceil \leq c^{\prime}-u^{\prime} \leq 5+\lfloor S / 7\rfloor
$$

This increases the range for $c-u$ by 12 . But since $c-u=$ $S \bmod 3$, only a third of this is accessible. Finally, if $S$ is increased by 35 , the range for $c-u$ increases by 4 . This gives a slope of $4 / 35$ for the linear fit in Fig. [].

## C. Calculating $n$ if the number of tries is known

We have $T=2 u+(c-u)$, which shows that $c-u$ has the same parity as $T$. The maximum possible value of $c-u$ is $T$ (if $c=T$ and $u=0$ ) and the minimum is $-T$.

Since $c-u=T \bmod 2$ and $c-u=S \bmod 3$, we have

$$
\begin{equation*}
c-u=6 \mu+\Delta \tag{7}
\end{equation*}
$$

The integer $\Delta$ is known from $S$ and $T: \Delta=T \bmod 2$ and $\Delta=S \bmod 3$. The integer $\mu$ is such that $-T-\Delta \leq$ $6 \mu \leq T-\Delta$. In particular, if $T$ is small then $\mu=0$.
$S$ then becomes $S=3(n+T+2 \mu)+\Delta$, so that

$$
\begin{equation*}
n=\frac{S-\Delta}{3}-T-2 \mu \tag{8}
\end{equation*}
$$

where $S, T$ and $\Delta$ are known.

## D. Example

Let us reuse the example of $S=17$.

- Since $S$ is not a multiple of $3, T$ cannot be zero.
- If $T=1$ then $\mu=0, \Delta=-1$ and $n=[17-(-1)] / 3-$ $1-0=5$ : the only try is not converted and there are 4 penalties.
- If $T=2$ then $\mu=0, \Delta=2$ and $n=(17-2) / 3-$ $2-0=3$ : both tries are converted and there is 1 penalty.
- If $T=3$ then $\mu=0, \Delta=-1$ and $n=[17-(-1)] / 3-$ $3-0=3$ : there is one more unconverted try than converted tries, and no penalties.
- $T \geq 4$ would mean $S \geq 20$.

We recover the three possibilities found earlier (but no recursion was needed this time).


[^0]:    ${ }^{1}$ Since from the point of view of scores penalties and drop goals are indistinguishable (and the latter are uncommon), 'penalty' will henceforth be used as a synonym for 'scoring 3 points'.

[^1]:    ${ }^{2}$ At this point this may not come as a surprise given the role played by parity, but had I told you this ten minutes ago, you would have been sceptical.

